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1 Introduction

For various reasons as discussed for instance in [1], the selection of actuator and sensor

positions is still ad hoc. This is especially true for 
exible structures where many candidate

con�gurations can exist. This study is an attempt to make the selection process more

methodical.

One approach to actuator and sensor placement is to optimize a closed loop performance

metric directly by selecting the actuators, sensors, and controller gains simultaneously. This

direct approach makes sense if the desired closed loop performance is well de�ned. Since

the individual actuator and sensor contributions to the closed loop performance metric is

complex, the solution strategy usually employs non linear programming with many design

and numerical iterations. A second approach is to select actuators and/or sensors based

on open loop properties so that closed loop performance is indirectly optimized. Since the

individual sensor and actuator contributions to the open loop metric is simple, nonlinear

optimization is usually not needed. This approach will suggest e�cient actuator and sensor

con�gurations for any type of control law. The method suggested in this study falls into the

latter class of approaches.

In this note, the use of Hankel singular value (HSV) formula as an actuator placement
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metric [2] is extended to 
exible structures in discrete time [3]. A main novelty introduced

is that the ambiguity in the weighting of the principal modes is addressed by incorporating

the general disturbance rejection goal into the actuator and sensor placement formulation.

Optimal actuator and sensor placement is considered for the purpose of designing control

laws for the general disturbance rejection problem. This apparent restriction to disturbance

rejection problem is not too restrictive since it is well known from modern multivariable

control theory that stability and even robustness requirements can be transformed to this

form with appropriate weighting. Simulation results demonstrates that the improvement

in closed loop performance is independent of the type of controller used since open loop

properties have been improved.

2 Actuators and Sensors for Disturbance Rejection

Figure 1 show a schematic of the disturbance rejection problem where the inputs to the plant
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Figure 1: General disturbance rejection problem

consist of two vectors and similarly the outputs consist of two vectors. As a necessary starting

point in a disturbance rejection problem, the disturbance source (or inputs) and the output

response de�ning the performance to be optimized is usually de�ned by the requirements of

the control problem.

The disturbance rejection viewpoint taken in this study is similar to the mode selection

viewpoint proposed earlier in the context of model reduction for 
exible structures [4]. The

above formulation is also consistent with the general multivariable control design [5] where

the plant P = [P11; P12;P21; P22] is assumed given and the problem is to design a stabilizing
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and realizable controller, K to minimize a suitable norm of the closed loop transfer function

matrix, Fl(P;K). The basic di�culty in the actuator/sensor placement problem is that only

P11 is given.

In this note, HSV are used to construct a metric that quanti�es the degree of control-

lability and observability for a given set of sensor and actuator con�guration. Although

the use of HSV to analyze the degree of controllability and observability of a linear system

is well established, especially in model reduction applications [4, 6, 7], the approximate

decomposition of the HSV with multiple sensors and actuators in terms of the HSV of all

combinations of sensor and actuator pair is new. This result signi�cantly simpli�es the design

problem of selecting the most e�ective set of sensors and actuators for 
exible structures.

The main novelty of the placement strategy introduced in this note is that the HSV from

the disturbance to the performance outputs are used to weigh the HSV between candidate

actuators to sensor sets. This is possible because in both cases, individual HSV directly

corresponds to individual structural modes which is unique to 
exible structures.

3 Decomposition of HSV

Given the quadruple (Az; Bz; Cz;Dz) of a discrete LTI state space matrix of a 
exible

structure, assumed to be lightly damped with distinct eigenvalues, let ( ~A; ~B; ~C; ~D) denote

the 2 by 2 block diagonal form whose ith block is

~Ai =

"
Re(zi) �Im(zi)
Im(zi) Re(zi)

#
: (1)

Let (zi; vi) denote the ith eigenvalue and eigenvector pair of Az and T denote the sampling

period. The steady-state discrete time controllability grammian, Wc1 , and observability

grammian, Wo1 , satis�es Sylvester equations. The triple ( ~A; ~B; ~C) is internally balanced

if its grammians are equal and diagonal [7], i.e., Wc1 = Wo1 = �2. The nonnegative real

diagonal elements of � are called the Hankel singular values of the system.

Due to the diagonal dominance property of the discrete controllability and observability
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grammian for 
exible structures, the square of the ith HSV is given [3] by


4i
�=

trace
h
~B ~BT

i
ii
trace

h
~CT ~C

i
ii

(4�iT )2
(2)

where �i = � 1

T
Re(lnzi) and the subscripts ii denotes the ith 2 by 2 block of matrices formed

from the inputs and outputs. It is shown [3] that the approximate formula is quite accurate

up to frequencies near 90 % of Nyquist frequency.

For p actuators and q sensors, the input and output matrices consist of p columns and

q rows, respectively

Bz = [Bz1; :::; Bzp]; CT
z = [CT

z1
; :::; CT

zq
] (3)

Partition the state transformation matrix as follows

V = [r1; . . . ; rn] ; V �T =
h
lT
1
; . . . ; lTn

i
(4)

where ri = [Re(vi) � Im(vi)], and lTi are 2n by 2 matrices made up of components of ith

right and left eigenvectors. The approximate square of the ith HSV in Eq.(2) can be written

in terms of individual actuator and sensor


4i
�=

Pp
j=1 f

2

ij �
Pq

k=1 g
2

ik

(4�iT )2
=

pX
j=1

qX
k=1


4i (j; k) (5)

where

f2ik = kliBzkk
2

2
; g2ik = kCzkrik

2

2
(6)


4i (j; k) denotes the squared ith HSV for the jth input and kth output.

The importance of Eq.(5) lies in the decomposition of the HSV of the multivariable


exible structure in terms of the sum of approximate HSV of each actuator and sensor

pair. The contribution of each pair appears in a very convenient form from their placement

standpoint. The exact HSV are not decomposable in general, i.e.,


4i = �i(
pX

j=1

qX
k=1

WcjWok) 6=
pX

j=1

qX
k=1

�i(WcjWok) (7)
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4 Placement Metric

Let �wz denote the HSV from the disturbance to the performance outputs (see Figure 1)

�wz = diag(
wz1 ; . . . ; 
wzn) (8)

Also let �uy and ��uy denote the HSV for p actuators to q sensors and the HSV from a

reference set of actuators to a reference set of sensors respectively

�uy = diag(
uy1 ; . . . ; 
uyn) (9)

��uy = diag(�
uy1 ; . . . ; �
uyn) (10)

De�ne the actuator and sensor placement metric as a weighted sum

J
�
=

nX
i=1


4uyi
�
4uyi


4wzi
�=

qX
j=1

pX
k=1

Jjk (11)

where contribution from jth sensor and kth actuator pair is

Jjk =
nX
i=1

 

4wzi
�
4uyi

!

4uyi(j; k) (12)

It is necessary to introduce the above weights because the basic idea is to improve the joint

controllability and observability for multiple modes and not all modes are equally important

physically. HSV can vary by orders of magnitude and therefore a few physically irrelevent

modes could dominate an unweighted scalar metric. Hence, the normalizing weight, �
4uyi, is

introduced to make each HSV equally important assuming no a priori physical knowledge

of individual modes. An example of a normalizing weight is when all actuators and sensors

are included. After the normalization, the relative importance of each mode in the control

problem can be incorporated by using the weight, 
4wzi. Modes that are important in the

disturbance rejection performance will give larger weights. Note that Jjk is basically a

weighted trace of �uy(j; k) squared.

For actuator (sensor) placement only, the set of q sensors (p actuators) are assumed

�xed. The above metric simpli�es to

J �=
pX

k=1

Jact
k

0
@ qX
j=1

J sen
j

1
A (13)
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where the contribution of the kth actuator (jth sensor) is

Jact
k =

nX
i=1

f2ikw
2

i

 
J sen
j =

nX
i=1

g2ijw
2

i

!
(14)

The weighting factor for the ith mode is

w2

i =
1

(4�iT )2

4wzi
�
4uyi

qX
j=1

g2ij

 
1

(4�iT )2

4wzi
�
4uyi

pX
k=1

f2ik

!
(15)

Note that fik (gij) denotes the in
uence of the kth actuator (jth sensor) on the ith mode.

Additional factors that contribute to the above weighting factor include damping, signi�cance

with respect to disturbance rejection, and the reference HSV, for the ith mode.

5 Placement Strategy

Table 1 show the individual contributions for all candidate sensors and actuators. The sum

Act # Sensor

P lacement

J11 � � � J1k � � � J1p J sen
1

...
...

...
...

Sensor # Jj1 � � � Jjk � � � Jjp J sen
j

...
...

...
...

Jq1 � � � Jqk � � � Jqp J sen
q

Actuator

P lacement
Jact
1

� � � Jact
k � � � Jact

p J =
Pq

j=1

Pp
k=1 Jjk

Table 1: Actuator and sensor selection table

of each row is given by the last column while the sum of each column is given by the last row.

The total metric for all sensors and actuators are given by the sum of the last row or column.

The costs Jact
k (J sen

j ) represents the contribution of the kth actuator (jth sensor) using all

given sensors (actuators). The goal is to maximize the metric J using the least number of

actuators and/or sensors. Note that the advantage of the metric applied to 
exible structure

is that the contribution of each actuator and sensor appears linearly and independently.

For simultaneous actuator and sensor selection problem, we need to maximize the linear

sum of non-negative numbers

J =
qX

j=1

pX
k=1

Jjk (16)
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Clearly, a table of nonnegative numbers need to be examined such that J can be approached

using the fewest number of actuators and sensors. For actuator (or sensor) only selection

problem, a bar chart of

J =
pX

k=1

Jact
k =

qX
j=1

J sen
j (17)

will indicate the best selection. Actuators (sensors) with small values of Jact
k (J sen

j ) can be

removed as the least signi�cant ones.

6 Concluding Remarks

The metric and methodology introduced in this paper appears promising in its potential

development as a generic tool for actuator and sensor selection for feedback control design

of 
exible structures. This optimism is based on the advantages evident in using the

approximate HSV formula for actuator/sensor selection: HSV of individual pairs can be

summed; and it is analytically and computationally simple and avoids direct numerical

optimization; and perhaps most importantly, it gives physical insight.

Preliminary simulation results based on H2 and H1 control law designs indicate that

closed loop performance can be improved signi�cantly and the performance improvement is

independent of the particular type of control law. This consistent improvement is clearly the

result of judiciously improved controllability and observability in the open loop system. How-

ever, the particular form speci�ed for the disturbance rejection performance requirements

strongly a�ect optimal actuator selection.
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